Geometric Integrators for Piecewise Smooth Hamiltonian Systems
نویسندگان
چکیده
Abstract. In this paper, we consider C1,1 Hamiltonian systems. We prove the existence of a first derivative of the flow with respect to initial values and show that it satisfies the symplecticity condition almost everywhere in the phase-space. In a second step, we present a geometric integrator for such systems (called the SDH method) based on B-splines interpolation and a splitting method introduced by McLachlan and Quispel [Appl. Numer. Math. 45 (2003) 411–418], and we prove it is convergent, and that it preserves the energy and the volume.
منابع مشابه
Geometric Exponential Integrators
In this paper, we consider exponential integrators for semilinear Poisson systems. Two types of exponential integrators are constructed, one preserves the Poisson structure, and the other preserves energy. Numerical experiments for semilinear Possion systems obtained by semi-discretizing Hamiltonian PDEs are presented. These geometric exponential integrators exhibit better long time stability p...
متن کاملSpectral-collocation variational integrators
Spectral methods are a popular choice for constructing numerical approximations for smooth problems, as they can achieve geometric rates of convergence and have a relatively small memory footprint. In this paper, we introduce a general framework to convert a spectral-collocation method into a shootingbased variational integrator for Hamiltonian systems. We also compare the proposed spectral-col...
متن کاملLie-Poisson integrators: A Hamiltonian, variational approach
In this paper we present a systematic and general method for developing variational integrators for LiePoisson Hamiltonian systems living in a finite-dimensional space g∗, the dual of Lie algebra associated with a Lie group G . These integrators are essentially different discretized versions of the Lie-Poisson variational principle, or a modified Lie-Poisson variational principle proposed in th...
متن کاملMultivalued Solutions to the Eikonal Equation in Stratified Media
In the present paper we study the geometric properties of the multivalued solutions to the eikonal equation and we give the appropriate classification theorems. Our motivation stems from geometrical optics for approximating high frequency waves in stratified media. We consider the case of a fixed Hamiltonian imposed by the medium, and we present the geometric framework that describes the geomet...
متن کاملMathematisches Forschungsinstitut Oberwolfach Geometric Numerical Integration
The subject of this workshop was numerical methods that preserve geometric properties of the flow of an ordinary or partial differential equation. This was complemented by the question as to how structure preservation affects the long-time behaviour of numerical methods. Mathematics Subject Classification (2000): 65xx. Introduction by the Organisers The subject of this workshop was numerical me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008